On the arithmetic product of combinatorial species

نویسندگان

  • Manuel Maia
  • Miguel Méndez
چکیده

We introduce two new binary operations with combinatorial species; the arithmetic product and the modified arithmetic product. The arithmetic product gives combinatorial meaning to the product of Dirichlet series and to the Lambert series in the context of species. It allows us to introduce the notion of multiplicative species, a lifting to the combinatorial level of the classical notion of multiplicative arithmetic function. Interesting combinatorial constructions are introduced; cloned assemblies of structures, hyper-cloned trees, enriched rectangles, etc. Recent research of Cameron, Gewurz and Merola, about the product action in the context of oligomorphic groups, motivated the introduction of the modified arithmetic product. By using the modified arithmetic product we obtain new enumerative results. We also generalize and simplify some recent results of Canfield, and Pittel, related to the enumerations of tuples of partitions with restricted meet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology

The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...

متن کامل

On the structural properties for the cross product of fuzzy numbers with applications

In the fuzzy arithmetic, the definitions of addition and multiplication of fuzzy numbers are based on Zadeh’s extension principle. From theoretical and practical points of view, this multiplication of fuzzy numbers owns several unnatural properties. Recently, to avoid this shortcoming, a new multiplicative operation of product type is introduced, the so-called cross-product of fuzzy numbers. Th...

متن کامل

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

Prediction of Sulfate Scale Depositions in Oilfield Operations Using Arithmetic of LR Fuzzy Numbers

In this study fuzzy arithmetic is presented as a tool to tackle the prediction of the amount of barium, strontium and calcium sulfates scales in oilfield operations. Since the shape of fuzzy numbers’ membership functions is a spread representative of the whole possible values for a special model parameter, fuzzy numbers are able to consider the uncertainties in parameter determinations and thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008